Sign in to follow this  
Followers 0

New research on meth addiction

6 posts in this topic

SAN DIEGO, March 15 — Chemists at The Scripps Research Institute have found evidence in laboratory studies that the immune system may be able to recognize methamphetamine and boost tolerance to the drug through an unusual vaccine-like mechanism. Their finding, if confirmed in human studies, could help explain why chronic users go on long binges with the illicit drug, also known as speed. The study could lead to new treatments for the drug’s addiction, they say.

Recent studies by others have documented the drug’s apparent ability to suppress the immune system, making abusers more vulnerable to diseases such as HIV. The new study is the first to suggest that the drug can engage the body’s defense system to attack methamphetamine in such a way that makes users inclined to use more of the drug, the researchers say. Their study, which paints a clearer picture of the drug’s effect on the immune system and its potential for abuse, was described today at the 229th national meeting of the American Chemical Society, the world’s largest scientific society.

“Test animals injected with methamphetamine actually developed antibodies to the drug, which is highly unique for a molecule of its relatively small size,” says study co-leader Kim Janda, Ph.D., a chemist at Scripps in La Jolla, Calif. Developing antibodies to the body’s invaders, such as viruses and bacteria, is normally a good thing and forms the basis of modern vaccines, he explains. But ironically, people who abuse methamphetamine may build up antibodies to the drug itself, so they require increasing amounts to get high, resulting in binging behavior, he says.

“Without knowing it, they’re essentially vaccinating themselves against the drug, and that’s not a good thing as it requires more of the drug to get high,” says Janda. His findings were first reported in a recent issue of the Journal of the American Chemical Society, the Society’s peer-reviewed journal.

In a test tube study designed to simulate the chemical reactions that occur with the drug when it enters the bloodstream, the researchers showed that methamphetamine reacts with glucose and proteins to form a larger-size “glycated” product. This product is then recognized by immune system components, stimulating the production of antibodies to the drug. In follow-up studies using mice, those injected with the drug developed antibodies to it.

“Antibodies are usually produced only in response to large molecule invaders such as proteins, not to small drug molecules,” Janda says. “Glycation acts like a linker that allows [the methamphetamine] to be displayed to the immune system, triggering a vaccine-like reaction.”

Just as a vaccine is able to remove invading pathogens by using antibodies to the pathogen, antibodies to methamphetamine attack and begin to clear the drug, Janda says. If the antibodies prevent some of the drug from reaching its place of action in the brain’s pleasure center, users might require more of the drug because some of it is bound up by antibodies and “soaked up like a sponge,” according to the researcher.

“If the mechanism we proposed proves true in humans, then it will help explain why addicts go on prolonged binges, requiring more frequent intake and ever-increasing amounts of the drug in order to achieve a high,” says Janda, who led the study with his former student, Tobin Dickerson, Ph.D., also a chemist at Scripps.

Other drugs of abuse, including nicotine and ecstasy (which is structurally similar to methamphetamine), might share a similar mechanism of action involving immune system recognition and a consequent rise in tolerance to the drug, Janda and his associates theorize. Tolerance refers to the capacity to have a decreased response to a drug after prolonged use. Increased drug tolerance raises the likelihood that a person will become addicted.

“Right now, there’s nothing really effective in getting people off methamphetamine,” says Janda, who believes that highly specific methamphetamine antibodies can be made in a laboratory and then used as a clinical treatment for addiction. In theory, antibodies to the drug could be mass produced and administered at therapeutic levels that are high enough to clear the drug from the body, he says.

“Methamphetamine has become the ‘crack’ of the 21st century,” Janda says. “We’re just starting to unravel its mechanism of addiction.” Further studies of the drug are planned, he adds.

Methamphetamine is a powerful psychostimulant that goes by a number of common names, including “speed,” “ice” and “crank.” It is often made in make-shift laboratories using over-the-counter drug ingredients, particularly cold and allergy medicines. Available as a powder or crystal, the drug can be injected, snorted, swallowed and smoked to provide users with a sense of euphoria. Drug effects can last for up to 12 hours. Frequent use is associated with serious health problems, including memory loss, aggression, psychotic behavior, and potential heart and brain damage.

The Skaggs Institute for Chemical Biology (at Scripps) and the National Institute on Drug Abuse provided funding for this study. In addition to Janda and Dickerson, other study co-authors include Noboru Yamamoto and Diana Ruiz, also of Scripps.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

# # #

The paper on this research, ORGN 432, will be presented at 3:20 p.m., Tuesday, March 15, at the Convention Center, Room 25A, during the symposium, “Proteins, Peptides, Amino Acids, and Enzymes.”

Kim D. Janda, Ph.D., and Tobin J. Dickerson, Ph.D., are chemists with The Skaggs Institute for Chemical Biology at The Scripps Research Institute in La Jolla, Calif.

ORGN 432

Immunological consequences of methamphetamine-based protein glycation

Tobin J. Dickerson, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Rd., BCC-582, La Jolla, CA 92037, Fax: 858-784-2590,, Noboru Yamamoto, Tsukuba Research Laboratories, Discovery Research Laboratories I, Eisai Co., Ltd, and Kim D. Janda, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute

Methamphetamine is a potent psychostimulant that has recently seen extensive growth in its use and production in clandestine laboratories. Although numerous detrimental consequences of methamphetamine use are documented, the molecular mechanisms underlying these physiological effects remain unknown. We have discovered that methamphetamine can participate in the aberrant glycation of proteins and is detectable by various biochemical analyses. Mouse albumin can be readily modified, and injection of this protein into mice yields a significant immune response, even in the absence of adjuvants. This lecture will summarize our findings in this area, including the potential implication of this phenomenon in the context of drug addiction.

Briefly explain in lay language what you have done, why it is significant and what are its implications (particularly to the general public)

The crux of our finding is that methamphetamine can react with glucose and proteins to form what are called a “glycated” product. Additionaly, we showed that the presence of these methamphetamine-glycated proteins in the bloodstream can lead to a response from the immune system, stimulating the production of antibodies that recognize the glycated form of methamphetamine. This immune response might be one way that the body acquires resistance and may have implications for why methamphetamine addicts go on long binges. If the antibodies prevent some of the drug from reaching its place of action in the brain, addicts might require more of the drug because some of it is bound up by antibodies. What this suggests is that since methamphetamine may react with proteins and induce an immune response; perhaps the body naturally has the ability to generate antibodies that may counteract methamphetamine. If the mechanism we are proposing is correct, then addicts are in essence vaccinating themselves against the drug when they use it and thus exposing themselves to ever-increasing amounts of methamphetamine in order to achieve a high. Amphetamines in general are capable of this type of chemistry, but not all drugs of abuse. It is the molecular structure of the drug that determines if "glycation" is possible. Our initial studies into this area were with a long-lived nicotine metabolite, nornicotine, which can also participate in protein glycation. The two compounds possess similar molecular structures. Thus, our study does not necessary provide new "cautions" as methamphetamine is already known to be highly addictive and heavy use leads to tolerance, but instead, provides a previously unrecognized mechanism for why methamphetamine users develop tolerance.

How new is this work and how does it differ from that of others who may be doing similar research?

To our knowledge, no other groups are exploring the process of protein glycation in terms of drugs of abuse. Protein glycation has been previously shown to increase the immunogenicity of a glycated protein, however, not in the context of drug addiction. In our study, a drug is taken into the body, which then modifies the body's proteins. The drug user's immune system then thinks these proteins are different enough to be considered "invaders" and initiates an immune reponse to make antibodies. Although these antibodies do not bind the drug very tightly, they may serve to soak up some of the drug like a sponge, thereby decreasing the level of the drug in the user's system. In essence, this is tolerance as the drug user will then have to use an increased amount of methamphetamine to achieve the same "high" as before the immune response occurred. In terms of novelty, this type of tolerance has not been previously proposed.

Special Instructions/feedback:

Kim D. Janda

Department of Chemistry and The Skaggs Institute for Chemical Biology

The Scripps Research Institute

10550 N. Torrey Pines Road

La Jolla, CA 92037

Phone Number: 858-784-2516

Fax Number: 858-784-2590

Publishable Email:

Share this post

Link to post
Share on other sites

very interesting & quite shocking.

who'd a thunk it? an anti-body for speed.

way way back in the early 90's i was introduced to MDMA (which in the posted article they theorise might have a similar response), initially i was so impressed that i was taking it every weekend for over a year.

after maybe 3 months, 1 pill was no longer enough for me or my friends, who'd started using about the same time. So we took 2.

we all recognised we were building a tolerance, but took that as a normal reaction to such strong drugs. maybe we were dead wrong?

Share this post

Link to post
Share on other sites

I don't think MDMA can really be compare to Speed.

or can it?

once I talked to a chemist and he said "MDMA is 'not really an amphetamine', even if the "A" at the end stands for Amphetamine"

so I think there would probably be no antibodies for MDMA...?

Share this post

Link to post
Share on other sites

Gom--i really don't know about the truth ov your chemist friends statement; all i do know is that ov a group ov say a dozen regular users tolerance to using every weekend developed in ALL users after about 4 months ov weekend use.

i don't know what causes tolerance, but this explanation seems to fit my experience.

Share this post

Link to post
Share on other sites

Chemically, MDMA is amphetamine with a small extra bit tacked on. It is likely that it would form similiar complexes in-vivo.

I imagine your friend meant that it has a vastly different pharmacology (and thus subjective effects) to amphetamine/meth and other "normal", stimulant amphetamines, and was trying to dispel the notion that it is merely some sort of new-fangled "designer-speed".

Nabraxas- the usual mechanisms known for development of tolerance are "pharmacodynamic tolerance" - eg downregulation of receptors (ie less receptors or less downstream response from receptor activation), and "pharmacokinetic tolerance", eg upregulation of degradative or conjugating enzymes that reduce the available levels of drug produced from a certain dose.

[ 12. April 2005, 16:22: Message edited by: Tryptameanie ]

Share this post

Link to post
Share on other sites

Someone I've known for a long time had a really bad speed habit for a number of years, and needed quite a bit of asssistance to clean their act up.They were active weekly bingers for about ten years ( after two years break kicking an earlier coke habit ) and then they swung into full gear IVing a gram or two a day for three years. It was either give up or die, they were pretty fucked by the time everyone stepped in.

They're fine now, but during the dehabituation ( is that a word? ) period ( longer than actual withdrawl period ), and to this day, said that they felt like they were becoming "allergic" to the substance- their words not mine, that is to say, for increasing lengths of time and during rapidly shortening binge periods they felt physically repulsed by the drug and the effects that it was having on them overall.

I did ask at the time whether the meth habit was turning her into a puritan, and was told that it was more than a psychological reaction for them, it was a physical repugnance, kinda like an automatic sneeze response.

Yes there are a number of ways and means that this response could have come about, but I was wondering whether the immune response that the paper alleges is responsible for increasing use patterns could eventually over time kick into a protective response which would work against use pattterns over time?

That's not a hard scientific statement, just an question based on observation. Knowing several others who are former addicts, tobacco, alcohol and heroin mostly, in many cases there seems to be a similar mechanism in operation - for example ex- smokers are legendarily more vehement about having someone light up in front of them than people who have never smoked...

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  
Followers 0